73 research outputs found

    Dose–response effect of a whey protein preload on within-day energy intake in lean subjects

    Get PDF
    The effect of consuming different amounts of whey protein on appetite and energy intake was investigated in two separate studies using randomised, crossover designs. Healthy-weight men and women (range: BMI 19·0–25·0 kg/m2, age 19·4–40·4 years) consumed one of four 400 ml liquid preloads, followed by an ad libitum test meal 90 min later. In study 1, preloads were 1675 kJ with 12·5, 25 or 50 % of energy from protein, and in study 2, preloads were 1047 kJ with 10, 20 or 40 % energy from protein. Flavoured water was used as the control in both the studies. Appetite ratings were collected immediately before 30, 60 and 90 min after consuming the preloads; and immediately, 30 and 60 min after consuming the test meal. In study 1, energy intake following the control preload (4136 (sem 337) kJ) was significantly higher than each of the 12·5 % (3520 (sem 296) kJ), 25 % (3384 (sem 265) kJ) and 50 % (2853 (sem 244) kJ) protein preloads (P < 0·05). Intake after the 12·5 % preload was significantly higher than following 25 and 50 % preloads (P < 0·05). In study 2, energy intake following the control preload (4801 (sem 325) kJ) was higher than following the 10 % (4205 (sem 310) kJ), 20 % (3988 (sem 250) kJ) and 40 % (3801 (sem 245) kJ) protein preloads (P < 0·05). There were no differences in subjective appetite ratings between preloads in either study. These findings indicate a dose–response effect of protein content of the preload on energy intake at a subsequent meal

    Impact of Nutrient Type and Sequence on Glucose Tolerance: Physiological Insights and Therapeutic Implications

    Get PDF
    Pharmacological and dietary interventions targeting postprandial glycemia have proved effective in reducing the risk for type 2 diabetes and its cardiovascular complications. Besides meal composition and size, the timing of macronutrient consumption during a meal has been recently recognized as a key regulator of postprandial glycemia. Emerging evidence suggests that premeal consumption of non-carbohydrate macronutrients (i.e., protein and fat “preloads”) can markedly reduce postprandial glycemia by delaying gastric emptying, enhancing glucose-stimulated insulin release, and decreasing insulin clearance. The same improvement in glucose tolerance is achievable by optimal timing of carbohydrate ingestion during a meal (i.e., carbohydrate-last meal patterns), which minimizes the risk of body weight gain when compared with nutrient preloads. The magnitude of the glucose-lowering effect of preload-based nutritional strategies is greater in type 2 diabetes than healthy subjects, being comparable and additive to current glucose-lowering drugs, and appears sustained over time. This dietary approach has also shown promising results in pathological conditions characterized by postprandial hyperglycemia in which available pharmacological options are limited or not cost-effective, such as type 1 diabetes, gestational diabetes, and impaired glucose tolerance. Therefore, preload-based nutritional strategies, either alone or in combination with pharmacological treatments, may offer a simple, effective, safe, and inexpensive tool for the prevention and management of postprandial hyperglycemia. Here, we survey these novel physiological insights and their therapeutic implications for patients with diabetes mellitus and altered glucose tolerance

    Monosodium glutamate delivered in a protein-rich soup improves subsequent energy compensation

    Get PDF
    Previous research suggests that monosodium glutamate (MSG) may have a biphasic effect on appetite, increasing appetite within a meal with its flavour-enhancing effect, but enhancing subsequent satiety due to its proposed role as a predictor of protein content. The present study explored this by assessing the impact of a 450 g soup preload differing in MSG concentration (1 % MSG added (MSG+) or no MSG (MSG-)) and nutrient content (low-energy control or high-energy carbohydrate or high-energy protein) on rated appetite and ad libitum intake of a test meal in thirty-five low-restraint male volunteers using a within-participant design. Protein-rich preloads significantly reduced intake at the test meal and resulted in more accurate energy compensation than did carbohydrate-rich preloads. This energy compensation was stronger in the MSG+ protein conditions when compared with MSG+ carbohydrate conditions. No clear differences in rated appetite were seen in MSG or the macronutrient conditions alone during preload ingestion or 45 min after intake. Overall, these findings indicate that MSG may act to further improve energy compensation when provided in a protein-rich context

    L-Arginine promotes gut hormone release and reduces food intake in rodents

    Get PDF
    Aims: To investigate the anorectic effect of L‐arginine (L‐Arg) in rodents. Methods: We investigated the effects of L‐Arg on food intake, and the role of the anorectic gut hormones glucagon‐like peptide‐1 (GLP‐1) and peptide YY (PYY), the G‐protein‐coupled receptor family C group 6 member A (GPRC6A) and the vagus nerve in mediating these effects in rodents. Results: Oral gavage of L‐Arg reduced food intake in rodents, and chronically reduced cumulative food intake in diet‐induced obese mice. Lack of the GPRC6A in mice and subdiaphragmatic vagal deafferentation in rats did not influence these anorectic effects. L‐Arg stimulated GLP‐1 and PYY release in vitro and in vivo. Pharmacological blockade of GLP‐1 and PYY receptors did not influence the anorectic effect of L‐Arg. L‐Arg‐mediated PYY release modulated net ion transport across the gut mucosa. Intracerebroventricular (i.c.v.) and intraperitoneal (i.p.) administration of L‐Arg suppressed food intake in rats. Conclusions: L‐Arg reduced food intake and stimulated gut hormone release in rodents. The anorectic effect of L‐Arg is unlikely to be mediated by GLP‐1 and PYY, does not require GPRC6A signalling and is not mediated via the vagus. I.c.v. and i.p. administration of L‐Arg suppressed food intake in rats, suggesting that L‐Arg may act on the brain to influence food intake. Further work is required to determine the mechanisms by which L‐Arg suppresses food intake and its utility in the treatment of obesity

    ASSESSMENT OF MENSTRUAL HEALTH AND ANALGESICS USAGE IN YOUNG AGE WOMEN

    Get PDF
    Objective: The study focuses on assessing the incidence of menstrual irregularity among young women and the factors for a disturbance with the rationale to assess the use of analgesic drugs during Premenstrual Syndrome (PMS). Methods: A cross-sectional study was used. A total of 2500 randomly selected young female between the age of 11 and 30 y completed the study questionnaire to assess lifestyle pattern, variations in menstrual pattern, perceived stress, and to capture information about their menstrual cycle and related problems. In addition, the questionnaire assessed the use of analgesics for PMS. Results: 2481 participants completed the questionnaire. The mean age of participants’ menarche was 12.85±1.432 y. The prevalence of menstrual irregularities was 25.0 % (n=621) and about 8.5% (n=211) of respondents had severe pain that was not relieved by the use of analgesics. On the other hand, 50.9 % (n=1262) reported severe pain that was relieved by analgesics. A total of 1279 (51.6 %) of participants in this study used Over The Counter (OTC) analgesics to relieve PMS. Conclusion: Dysmenorrhea is the most common complaint among young females in Saudi Arabia. Low Body Mass Index (BMI), sedentary lifestyle, stress and early age of menarche are the most important factors associated with menstrual irregularities. Proper education programs and awareness among young girls about their menstrual health, and the provision of guidance in choosing effective analgesics and treatment options for dysmenorrhea are highly recommended

    Whey protein consumption after resistance exercise reduces energy intake at a post-exercise meal

    Get PDF
    Purpose: Protein consumption after resistance exercise potentiates muscle protein synthesis, but its effects on subsequent appetite in this context are unknown. This study examined appetite and energy intake following consumption of protein- and carbohydrate-containing drinks after resistance exercise. Methods: After familiarisation, 15 resistance training males (age 21 ± 1 years, body mass 78.0 ± 11.9 kg, stature 1.78 ± 0.07 m) completed two randomised, double-blind trials, consisting of lower-body resistance exercise, followed by consumption of a whey protein (PRO 23.9 ± 3.6 g protein) or dextrose (CHO 26.5 ± 3.8 g carbohydrate) drink in the 5 min post-exercise. An ad libitum meal was served 60 min later, with subjective appetite measured throughout. Drinks were flavoured and matched for energy content and volume. The PRO drink provided 0.3 g/kg body mass protein. Results: Ad libitum energy intake (PRO 3742 ± 994 kJ; CHO 4172 ± 1132 kJ; P = 0.007) and mean eating rate (PRO 339 ± 102 kJ/min; CHO 405 ± 154 kJ/min; P = 0.009) were lower during PRO. The change in eating rate was associated with the change in energy intake (R = 0.661, P = 0.007). No interaction effects were observed for subjective measures of appetite. The PRO drink was perceived as creamier and thicker, and less pleasant, sweet and refreshing (P < 0.05). Conclusion: These results suggest whey protein consumption after resistance exercise reduces subsequent energy intake, and this might be partially mediated by a reduced eating rate. Whilst this reduced energy intake is unlikely to impair hypertrophy, it may be of value in supporting an energy deficit for weight loss

    Whey protein consumption after resistance exercise reduces energy intake at a post-exercise meal

    Get PDF
    Purpose - Protein consumption after resistance exercise potentiates muscle protein synthesis, but its effects on subsequent appetite in this context are unknown. This study examined appetite and energy intake following consumption of protein- and carbohydrate-containing drinks after resistance exercise. Methods - After familiarisation, 15 resistance training males (age 21 ± 1 years, body mass 78.0 ± 11.9 kg, stature 1.78 ± 0.07 m) completed two randomised, double-blind trials, consisting of lower-body resistance exercise, followed by consumption of a whey protein (PRO 23.9 ± 3.6 g protein) or dextrose (CHO 26.5 ± 3.8 g carbohydrate) drink in the 5 min post-exercise. An ad libitum meal was served 60 min later, with subjective appetite measured throughout. Drinks were flavoured and matched for energy content and volume. The PRO drink provided 0.3 g/kg body mass protein. Results - Ad libitum energy intake (PRO 3742 ± 994 kJ; CHO 4172 ± 1132 kJ; P = 0.007) and mean eating rate (PRO 339 ± 102 kJ/min; CHO 405 ± 154 kJ/min; P = 0.009) were lower during PRO. The change in eating rate was associated with the change in energy intake (R = 0.661, P = 0.007). No interaction effects were observed for subjective measures of appetite. The PRO drink was perceived as creamier and thicker, and less pleasant, sweet and refreshing (P < 0.05). Conclusion - These results suggest whey protein consumption after resistance exercise reduces subsequent energy intake, and this might be partially mediated by a reduced eating rate. Whilst this reduced energy intake is unlikely to impair hypertrophy, it may be of value in supporting an energy deficit for weight loss

    Effects of pre-meal whey protein consumption on acute food intake and energy balance over a 48-hour period

    Get PDF
    The effects of pre-meal whey protein consumption on acute food intake and subsequent energy balance measured over 48-h was investigated in males of healthy-weight (HW) or living with overweight and obesity (OV/OB). On two separate trial days, following a controlled breakfast (09:00) and lunch (13:00), 12 HW and 12 OV/OB males consumed either whey protein (20 g) or flavoured water beverages (16:40), and ad libitum test meal (17:00). A controlled 48-h assessment of energy intake and expenditure was used to determine any compensatory behaviour. Test meal energy intake reduced 15.9 % in HW (P = 0.003), and 17.8 % in OV/OB (P = 0.005) following whey protein, compared to placebo. We report no between-group differences and no changes in compensatory behaviour. A small dose of whey protein reduces energy intake at the next meal, without upregulating compensatory behaviours in both HW and OV/OB males. However, chronic effects on body composition and weight loss remain to be elucidated
    • 

    corecore